Skip to main content
Log in

Effect of graphene on thermal conductivity of laser cladded copper

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

A thick copper coating on the triangular plates of vacuum vessels has been proposed for plasma passivation and vertical stability in tokamak. Laser cladding technique is utilized to develop such coatings. However, the process leads to a drastic decrease in the thermal conductivity of the copper coating. Regaining the thermal conductivity of laser cladded copper is a challenging task. In this work, we have verified that graphene deposition can improve the thermal conductivity of laser cladded copper. Graphene layers have been grown on a 3-mm-thick laser cladded copper at 900 °C under methane, argon, and hydrogen atmosphere inside a thermal chemical vapor deposition system. The thermal conductivity of the laser cladded copper was found to be improved from 140 W/mK for as-deposited cladding to 309 W/mK after graphene growth. Further, structural morphology and thermal conductivity of graphene-coated laser cladded copper remained intact after irradiation tests with high-energy prompt gamma-rays and heavy nuclei exposure, which depicted its sustainability in actual environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The authors declare that data regarding the manuscript is available.

Code availability

Not applicable.

References

  1. M. Diez, M. Firdaouss, M. Richou, A. Bultel, F. Perry, H. Roche, C. Grisolia, M. Missirlian, Tungsten coatings repair: an approach to increase the lifetime of plasma facing components. Fusion Eng. Des. 146, 800–804 (2019)

    Article  CAS  Google Scholar 

  2. K. Ioki, V. Barabash, C. Bachmann, P. Chappuis, C.H. Choi, J.-J. Cordier, B. Giraud, Y. Gribov, Ph. Heitzenroeder, N. Her, G. Johnson, L. Jones, C. Jun, B.C. Kim, E. Kuzmin, D. Loesser, A. Martin, M. Merola, H. Pathak, P. Readman, M. Sugihara, A. Terasawa, Yu. Utin, X. Wang, S. Wu, J. Yu, Design finalization and material qualification towards procurement of the ITER vacuum vessel. J. Nucl. Mater. 417, 860–865 (2011)

    Article  CAS  Google Scholar 

  3. K. Ioki, C. Bachmann, P. Chappuis, J.J. Cordier, B. Giraud, Y. Gribov, L. Jones, C. Jun, B.C. Kim, E. Kuzmin, H. Pathak, P. Readman, M. Sugihara, Yu. Utin, X. Wang, S. Wu, ITER vacuum vessel: design review and start of procurement process. Fusion Eng. Des. 84, 229–235 (2009)

    Article  CAS  Google Scholar 

  4. G.H. Kim, C.K. Park, H.J. Ahn, H.S. Kim, K.H. Hong, S.W. Jin, H.G. Lee, H. Fukanuma, R. Huang, B.R. Roh, T.S. Kim, H.J. Sung, J.W. Sa, C.H. Choi, Fabrication feasibility study on copper cold spray in tokamak system. Fusion Eng. Des. 98, 1576–1579 (2015)

    Article  Google Scholar 

  5. D.A. Humphreys, T.A. Casper, N. Eidietis, M. Ferrara, D.A. Gates, I.H. Hutchinson, G.L. Jackson, E. Kolemen, J.A. Leuer, J. Lister, L.L. LoDestro, W.H. Meyer, L.D. Pearlstein, A. Portone, F. Sartori, M.L. Walker, A.S. Welander, S.M. Wolfe, Experimental vertical stability studies for ITER performance and design guidance. Nucl. Fusion. 49, 115003 (2009)

    Article  Google Scholar 

  6. S. Singh, M. Kumar, G.P.S. Sodhi, R.K. Buddu, H. Singh, Development of thick copper claddings on SS316L steel for in-vessel components of fusion reactors and copper-cast iron canisters. Fusion Eng. Des. 128, 126–137 (2018)

    Article  CAS  Google Scholar 

  7. N. Miki, M. Verrecchia, P. Barabaschi, A. Belov, S. Chiocchio, F. Elio, K. Ioki, S. Kikuchi, V. Kokotkov, J. Ohmori, M. Roccella, P. Sonato, P. Testoni, Y. Utin, Vertical displacement event/disruption electromagnetic analysis for the ITER-FEAT vacuum vessel and in-vessel components. Fusion Eng. Des. 58, 555–559 (2001)

    Article  Google Scholar 

  8. A. Hassanein, T. Sizyuk, M. Ulrickson, Vertical displacement events: a serious concern in future ITER operation. Fusion Eng. Des. 83, 1020–1024 (2008)

    Article  CAS  Google Scholar 

  9. T. Hirai, K. Ezato, P. Majerus, ITER relevant high heat flux testing on plasma facing surfaces. Mater. Trans. 46, 412–424 (2005)

    Article  CAS  Google Scholar 

  10. B.C. Kim, Y.J. Lee, K.H. Hong, J.W. Sa, H.S. Kim, C.K. Park, H.J. Ahn, J.S. Bak, K.J. Jung, K.H. Park, B.R. Roh, T.S. Kim, J.S. Lee, Y.H. Jung, H.J. Sung, S.Y. Choi, H.G. Kim, I.K. Kwon, T.H. Kwon, Fabrication progress of the ITER vacuum vessel sector in Korea. Fusion Eng. Des. 88, 1960–1964 (2013)

    Article  CAS  Google Scholar 

  11. S. Singh, S. Chaudhary, H. Singh, Effect of electroplated interlayers on properties of cold-sprayed copper coatings on SS316L steel. Surf. Coat. Technol. 375, 54–65 (2019)

    Article  CAS  Google Scholar 

  12. F. Gärtner, T. Stoltenhoff, J. Voyer, H. Kreye, S. Riekehr, M. Koçak, Mechanical properties of cold-sprayed and thermally sprayed copper coatings. Surf. Coat. Technol. 200, 6770–6782 (2006)

    Article  Google Scholar 

  13. F. Findik, Recent developments in explosive welding. Mater. Des. 32, 1081–1093 (2011)

    Article  CAS  Google Scholar 

  14. R. Huang, W. Ma, H. Fukanuma, Development of ultra-strong adhesive strength coatings using cold spray. Surf. Coat. Technol. 258, 832–841 (2014)

    Article  CAS  Google Scholar 

  15. D. Seo, K. Ogawa, K. Sakaguchi, N. Miyamoto, Y. Tsuzuki, Parameter study influencing thermal conductivity of annealed pure copper coatings deposited by selective cold spray processes. Surf. Coat. Technol. 206, 2316–2324 (2012)

    Article  CAS  Google Scholar 

  16. L. Shepeleva, B. Medres, W.D. Kaplan, M. Bamberger, A. Weisheit, Laser cladding of turbine blades. Surf. Coat. Technol. 125, 45–48 (2000)

    Article  CAS  Google Scholar 

  17. S. Singh, P. Singh, H. Singh, R.K. Buddu, Characterization and comparison of copper coatings developed by low pressure cold spraying and laser cladding techniques. Mater. Today Proc. 18, 830–840 (2019)

    Article  CAS  Google Scholar 

  18. H. An, W.J. Lee, J. Jung, Graphene synthesis on Fe foil using thermal CVD. Curr. Appl. Phys. 11, S81–S85 (2011)

    Article  Google Scholar 

  19. A.A. Balandin, Phononics of graphene and related materials. ACS Nano 14, 5170–5178 (2020)

    Article  CAS  Google Scholar 

  20. D.L. Nika, A.A. Balandin, Phonons and thermal transport in graphene and graphene-based materials. Rep. Prog. Phys. 80, 036502 (2017)

    Article  Google Scholar 

  21. V. Ghai, H. Singh, P.K. Agnihotri, Synthesis and transfer of large area graphene without support layer. Indian J. Eng. Mater. Sci. 27, 1141–1144 (2020)

    CAS  Google Scholar 

  22. P. Goli, H. Ning, X. Li, C.Y. Lu, K.S. Novoselov, A.A. Balandin, Thermal properties of graphene–copper–graphene heterogeneous films. Nano Lett. 14, 1497–1503 (2014)

    Article  CAS  Google Scholar 

  23. S.H. Song, K.H. Park, B.H. Kim, Y.W. Choi, G.H. Jun, D.J. Lee, B.-S. Kong, K.-W. Paik, S. Jeon, Enhanced thermal conductivity of epoxy-graphene composites by using non-oxidized graphene flakes with non-covalent functionalization. Adv. Mater. 25, 732–737 (2013)

    Article  CAS  Google Scholar 

  24. C.H. Jeon, Y.H. Jeong, J.J. Seo, H.N. Tien, S.T. Hong, Y.J. Yum, S.H. Hur, K.J. Lee, Material properties of graphene/aluminum metal matrix composites fabricated by friction stir processing. Int. J. Precis. Eng. Manuf. 15, 1235–1239 (2014)

    Article  Google Scholar 

  25. M. Tian, L. Qu, X. Zhang, K. Zhang, S. Zhu, X. Guo, G. Han, X. Tang, Y. Sun, Enhanced mechanical and thermal properties of regenerated cellulose/graphene composite fibers. Carbohydr. Polym. 111, 456–462 (2014)

    Article  CAS  Google Scholar 

  26. K.M.F. Shahil, A.A. Balandin, Thermal properties of graphene and multilayer graphene: applications in thermal interface materials. Solid State Commun. 152, 1331–1340 (2012)

    Article  CAS  Google Scholar 

  27. V. Ghai, P. Ranjan, A. Batish, H. Singh, Atomic-level finishing of aluminum alloy by chemo-mechanical magneto-rheological finishing (CMMRF) for optical applications. J. Manuf. Process. 32, 635–643 (2018)

    Article  Google Scholar 

  28. S. Dhingra, J.F. Hsu, I. Vlassiouk, B. D’Urso, Chemical vapor deposition of graphene on large-domain ultra-flat copper. Carbon 69, 188–193 (2014)

    Article  CAS  Google Scholar 

  29. S. Naghdi, K.Y. Rhee, S.J. Park, A catalytic, catalyst-free, and roll-to-roll production of graphene via chemical vapor deposition: low temperature growth. Carbon 127, 1–12 (2018)

    Article  CAS  Google Scholar 

  30. A. Das, B. Chakraborty, A.K. Sood, Raman spectroscopy of graphene on different substrates and influence of defects. Bull. Mater. Sci. 31, 579–584 (2008)

    Article  CAS  Google Scholar 

  31. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006)

    Article  CAS  Google Scholar 

  32. A.C. Ferrari, Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 47–57 (2007)

    Article  CAS  Google Scholar 

  33. I. Calizo, I. Bejenari, M. Rahman, G. Liu, A.A. Balandin, Ultraviolet Raman microscopy of single and multilayer graphene. J. Appl. Phys. 106, 043509 (2009)

    Article  Google Scholar 

  34. A. Cortes, Graphene synthesis and characterization: Defense Technical Information Center. Fort Belvoir, VA, (2015).

  35. K. Takase, T. Kunugi, Y. Seki, H. Akimoto, Thermal hydraulic characteristics during ingress of coolant and loss of vacuum events in fusion reactors. Nucl. Fusion. 40, 527–535 (2000)

    Article  CAS  Google Scholar 

  36. J.W. Davis, A.A. Haasz, Oxygen removal of codeposited a-C: D layers from tokamak tiles. J. Nucl. Mater. 266, 478–484 (1999)

    Article  Google Scholar 

  37. R. Raj, S.C. Maroo, E.N. Wang, Wettability of graphene. Nano Lett. 13, 1509–1515 (2013)

    Article  CAS  Google Scholar 

  38. P.R. Kidambi, B.C. Bayer, R. Blume, Z.-J. Wang, C. Baehtz, R.S. Weatherup, M.-G. Willinger, R. Schloegl, S. Hofmann, Observing graphene grow: catalyst–graphene interactions during scalable graphene growth on polycrystalline copper. Nano Lett. 13, 4769–4778 (2013)

    Article  CAS  Google Scholar 

  39. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, R.S. Ruoff, Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Pushpendra P. Singh for allowing and executing the irradiation of samples with 7Li-ion beams and radiations.

Funding

The authors would like to thank the Department of Science and Technology-Funds for Improvement in Science and Technology (DST-FIST), India (Grant number: SR/FST/ETI-379/2014), for the financial support which helped in creating the facilities to carry out this work.

Author information

Authors and Affiliations

Authors

Contributions

V.G. and G.S.: graphene synthesis and characterizations; V.G.: data analysis; V.G., S.S., and S.S.: data interpretation; P.K.A.: CVD system for graphene growth; H.S.: coordination of the project and funding. All authors have discussed the data and contributed to the writing of the manuscript.

Corresponding author

Correspondence to Harpreet Singh.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1552 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, G., Ghai, V., Chaudhary, S. et al. Effect of graphene on thermal conductivity of laser cladded copper. emergent mater. 4, 1491–1498 (2021). https://doi.org/10.1007/s42247-021-00233-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-021-00233-2

Keywords

Navigation